2,630 research outputs found

    Towards a more balanced understanding of motor control systems

    Get PDF
    Roberts's book provides a reasonably thorough guide to the physiology and biomechanics of balance, unfortunately the discussion of the neural and cognitive aspects of motor control is less satisfactory. We propose that Roberts's statement of the problem of balance control should be extended to include control of non-equilibrium states, and we discuss sensorimotor calibration and integration in the context of maturation of the organism.Peer reviewe

    (Broken) Gauge Symmetries and Constraints in Regge Calculus

    Full text link
    We will examine the issue of diffeomorphism symmetry in simplicial models of (quantum) gravity, in particular for Regge calculus. We find that for a solution with curvature there do not exist exact gauge symmetries on the discrete level. Furthermore we derive a canonical formulation that exactly matches the dynamics and hence symmetries of the covariant picture. In this canonical formulation broken symmetries lead to the replacements of constraints by so--called pseudo constraints. These considerations should be taken into account in attempts to connect spin foam models, based on the Regge action, with canonical loop quantum gravity, which aims at implementing proper constraints. We will argue that the long standing problem of finding a consistent constraint algebra for discretized gravity theories is equivalent to the problem of finding an action with exact diffeomorphism symmetries. Finally we will analyze different limits in which the pseudo constraints might turn into proper constraints. This could be helpful to infer alternative discretization schemes in which the symmetries are not broken.Comment: 32 pages, 15 figure

    Effects of heavy bosonic excitations on QED vacuum

    Full text link
    We discuss the contribution of axion-like excitations (ALE) to the vacuum birrefringence in the limit mA≳ωm_A \gtrsim \omega, where mAm_A is the mass of the excitation and ω\omega the energy of test photons interacting with an external (intense) magnetic field. The relevance of this term with respect to the QED contribution depends on the ratio gA/mAg_A/m_A and, from present bounds on the mass and the coupling constant gAg_A, we find that in the present low energy regime, it ranges from 10−1410^{-14} to 10210^2 suggesting an interesting alternative to explore.Comment: References adde and section II rewritten. MPLA in pres

    Photon propagation in a cold axion background with and without magnetic field

    Get PDF
    A cold relic axion condensate resulting from vacuum misalignment in the early universe oscillates with a frequency m, where m is the axion mass. We determine the properties of photons propagating in a simplified version of such a background where the sinusoidal variation is replaced by a square wave profile. We prove that previous results that indicated that charged particles moving fast in such a background radiate, originally derived assuming that all momenta involved were much larger than m, hold for long wavelengths too. We also analyze in detail how the introduction of a magnetic field changes the properties of photon propagation in such a medium. We briefly comment on possible astrophysical implications of these results.Comment: 17 pages, 4 figures, revised version includes an extended discussion on physical implication

    From the discrete to the continuous - towards a cylindrically consistent dynamics

    Full text link
    Discrete models usually represent approximations to continuum physics. Cylindrical consistency provides a framework in which discretizations mirror exactly the continuum limit. Being a standard tool for the kinematics of loop quantum gravity we propose a coarse graining procedure that aims at constructing a cylindrically consistent dynamics in the form of transition amplitudes and Hamilton's principal functions. The coarse graining procedure, which is motivated by tensor network renormalization methods, provides a systematic approximation scheme towards this end. A crucial role in this coarse graining scheme is played by embedding maps that allow the interpretation of discrete boundary data as continuum configurations. These embedding maps should be selected according to the dynamics of the system, as a choice of embedding maps will determine a truncation of the renormalization flow.Comment: 22 page

    Optical probes of the quantum vacuum: The photon polarization tensor in external fields

    Full text link
    The photon polarization tensor is the central building block of an effective theory description of photon propagation in the quantum vacuum. It accounts for the vacuum fluctuations of the underlying theory, and in the presence of external electromagnetic fields, gives rise to such striking phenomena as vacuum birefringence and dichroism. Standard approximations of the polarization tensor are often restricted to on-the-light-cone dynamics in homogeneous electromagnetic fields, and are limited to certain momentum regimes only. We devise two different strategies to go beyond these limitations: First, we aim at obtaining novel analytical insights into the photon polarization tensor for homogeneous fields, while retaining its full momentum dependence. Second, we employ wordline numerical methods to surpass the constant-field limit.Comment: 13 pages, 4 figures; typo in Eq. (5) corrected (matches journal version
    • …
    corecore